跳转至

设置和环境变量

🌐 Translation by AI and humans

This translation was made by AI guided by humans. 🤝

It could have mistakes of misunderstanding the original meaning, or looking unnatural, etc. 🤖

You can improve this translation by helping us guide the AI LLM better.

English version

在许多情况下,你的应用可能需要一些外部设置或配置,例如密钥、数据库凭据、电子邮件服务的凭据等。

这些设置中的大多数是可变的(可能会改变),例如数据库 URL。并且很多可能是敏感的,比如密钥。

因此,通常会将它们提供为由应用程序读取的环境变量。

提示

要理解环境变量,你可以阅读环境变量

类型和验证

这些环境变量只能处理文本字符串,因为它们在 Python 之外,并且必须与其他程序及系统的其余部分兼容(甚至与不同的操作系统,如 Linux、Windows、macOS)。

这意味着,在 Python 中从环境变量读取的任何值都是 str 类型,任何到不同类型的转换或任何验证都必须在代码中完成。

Pydantic 的 Settings

幸运的是,Pydantic 提供了一个很好的工具来处理来自环境变量的这些设置:Pydantic: Settings management

安装 pydantic-settings

首先,确保你创建并激活了虚拟环境,然后安装 pydantic-settings 包:

$ pip install pydantic-settings
---> 100%

当你用以下方式安装 all 扩展时,它也会被一并安装:

$ pip install "fastapi[all]"
---> 100%

创建 Settings 对象

从 Pydantic 导入 BaseSettings 并创建一个子类,这与创建 Pydantic 模型非常相似。

与 Pydantic 模型一样,用类型注解声明类属性,也可以指定默认值。

你可以使用与 Pydantic 模型相同的验证功能和工具,例如不同的数据类型,以及使用 Field() 进行附加验证。

from fastapi import FastAPI
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()
app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from fastapi import FastAPI
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()
app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

提示

如果你想要一个可以快速复制粘贴的示例,请不要使用这个示例,使用下面最后一个示例。

当你创建该 Settings 类的实例(此处是 settings 对象)时,Pydantic 会以不区分大小写的方式读取环境变量,因此,大写变量 APP_NAME 仍会用于属性 app_name

接着它会转换并验证数据。因此,当你使用该 settings 对象时,你将获得你声明的类型的数据(例如 items_per_user 将是 int)。

使用 settings

然后你可以在应用中使用新的 settings 对象:

from fastapi import FastAPI
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()
app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from fastapi import FastAPI
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()
app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

运行服务器

接下来,运行服务器,并把配置作为环境变量传入,例如你可以设置 ADMIN_EMAILAPP_NAME

$ ADMIN_EMAIL="deadpool@example.com" APP_NAME="ChimichangApp" fastapi run main.py

<span style="color: green;">INFO</span>:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

提示

要为单个命令设置多个环境变量,只需用空格分隔它们,并把它们都放在命令前面。

然后,admin_email 设置将为 "deadpool@example.com"

app_name 将为 "ChimichangApp"

items_per_user 会保持默认值 50

在另一个模块中放置设置

你可以把这些设置放在另一个模块文件中,就像你在Bigger Applications - Multiple Files中看到的那样。

例如,可以有一个 config.py 文件:

from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()
🤓 Other versions and variants
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50


settings = Settings()

然后在 main.py 文件中使用它:

from fastapi import FastAPI

from .config import settings

app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from fastapi import FastAPI

from .config import settings

app = FastAPI()


@app.get("/info")
async def info():
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

提示

你还需要一个 __init__.py 文件,就像你在Bigger Applications - Multiple Files中看到的那样。

在依赖项中提供设置

在某些情况下,从依赖项中提供设置可能更有用,而不是在所有地方都使用一个全局的 settings 对象。

这在测试期间尤其有用,因为可以很容易地用你自己的自定义设置覆盖依赖项。

配置文件

延续上一个示例,你的 config.py 文件可能如下所示:

from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50
🤓 Other versions and variants
from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

Tip

Prefer to use the Annotated version if possible.

from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

Tip

Prefer to use the Annotated version if possible.

from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

注意,现在我们不再创建默认实例 settings = Settings()

主应用文件

现在我们创建一个依赖项,返回一个新的 config.Settings()

from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Annotated[Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Annotated[Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

提示

我们稍后会讨论 @lru_cache

目前你可以把 get_settings() 当作普通函数。

然后我们可以在“路径操作函数”中将其作为依赖项引入,并在需要的任何地方使用它。

from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Annotated[Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Annotated[Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from .config import Settings

app = FastAPI()


@lru_cache
def get_settings():
    return Settings()


@app.get("/info")
async def info(settings: Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

设置与测试

接着,在测试期间,通过为 get_settings 创建依赖项覆盖,就可以很容易地提供一个不同的设置对象:

from fastapi.testclient import TestClient

from .config import Settings
from .main import app, get_settings

client = TestClient(app)


def get_settings_override():
    return Settings(admin_email="testing_admin@example.com")


app.dependency_overrides[get_settings] = get_settings_override


def test_app():
    response = client.get("/info")
    data = response.json()
    assert data == {
        "app_name": "Awesome API",
        "admin_email": "testing_admin@example.com",
        "items_per_user": 50,
    }
🤓 Other versions and variants
from fastapi.testclient import TestClient

from .config import Settings
from .main import app, get_settings

client = TestClient(app)


def get_settings_override():
    return Settings(admin_email="testing_admin@example.com")


app.dependency_overrides[get_settings] = get_settings_override


def test_app():
    response = client.get("/info")
    data = response.json()
    assert data == {
        "app_name": "Awesome API",
        "admin_email": "testing_admin@example.com",
        "items_per_user": 50,
    }

Tip

Prefer to use the Annotated version if possible.

from fastapi.testclient import TestClient

from .config import Settings
from .main import app, get_settings

client = TestClient(app)


def get_settings_override():
    return Settings(admin_email="testing_admin@example.com")


app.dependency_overrides[get_settings] = get_settings_override


def test_app():
    response = client.get("/info")
    data = response.json()
    assert data == {
        "app_name": "Awesome API",
        "admin_email": "testing_admin@example.com",
        "items_per_user": 50,
    }

Tip

Prefer to use the Annotated version if possible.

from fastapi.testclient import TestClient

from .config import Settings
from .main import app, get_settings

client = TestClient(app)


def get_settings_override():
    return Settings(admin_email="testing_admin@example.com")


app.dependency_overrides[get_settings] = get_settings_override


def test_app():
    response = client.get("/info")
    data = response.json()
    assert data == {
        "app_name": "Awesome API",
        "admin_email": "testing_admin@example.com",
        "items_per_user": 50,
    }

在依赖项覆盖中,我们在创建新的 Settings 对象时为 admin_email 设置了一个新值,然后返回该新对象。

然后我们可以测试它是否被使用。

读取 .env 文件

如果你有许多设置可能经常变化,或在不同环境中不同,那么把它们放进一个文件中,然后像环境变量一样从中读取,可能非常有用。

这种做法非常常见:这些环境变量通常放在名为 .env 的文件中,该文件被称为 “dotenv”。

提示

以点(.)开头的文件在类 Unix 系统(如 Linux 和 macOS)中是隐藏文件。

但 dotenv 文件并不一定必须是这个确切的文件名。

Pydantic 支持使用一个外部库来从这类文件中读取。你可以在 Pydantic Settings: Dotenv (.env) support 中阅读更多信息。

提示

要使其工作,你需要执行 pip install python-dotenv

.env 文件

你可以有一个 .env 文件,内容如下:

ADMIN_EMAIL="deadpool@example.com"
APP_NAME="ChimichangApp"

.env 中读取设置

然后更新 config.py

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

    model_config = SettingsConfigDict(env_file=".env")
🤓 Other versions and variants
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

    model_config = SettingsConfigDict(env_file=".env")

Tip

Prefer to use the Annotated version if possible.

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

    model_config = SettingsConfigDict(env_file=".env")

Tip

Prefer to use the Annotated version if possible.

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    app_name: str = "Awesome API"
    admin_email: str
    items_per_user: int = 50

    model_config = SettingsConfigDict(env_file=".env")

提示

model_config 属性仅用于 Pydantic 配置。你可以在 Pydantic: Concepts: Configuration 中阅读更多信息。

这里我们在你的 Pydantic Settings 类中定义配置项 env_file,并将其设置为我们想要使用的 dotenv 文件名。

使用 lru_cache 仅创建一次 Settings

从磁盘读取文件通常是一个代价较高(缓慢)的操作,所以你可能希望只在第一次读取,然后复用同一个设置对象,而不是为每个请求都重新读取。

但是,每次我们执行:

Settings()

都会创建一个新的 Settings 对象,并且在创建时会再次读取 .env 文件。

如果依赖项函数是这样的:

def get_settings():
    return Settings()

我们就会为每个请求创建该对象,并为每个请求读取 .env 文件。 ⚠️

但由于我们在顶部使用了 @lru_cache 装饰器,Settings 对象只会在第一次调用时创建一次。 ✔️

from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from . import config

app = FastAPI()


@lru_cache
def get_settings():
    return config.Settings()


@app.get("/info")
async def info(settings: Annotated[config.Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }
🤓 Other versions and variants
from functools import lru_cache
from typing import Annotated

from fastapi import Depends, FastAPI

from . import config

app = FastAPI()


@lru_cache
def get_settings():
    return config.Settings()


@app.get("/info")
async def info(settings: Annotated[config.Settings, Depends(get_settings)]):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from . import config

app = FastAPI()


@lru_cache
def get_settings():
    return config.Settings()


@app.get("/info")
async def info(settings: config.Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

Tip

Prefer to use the Annotated version if possible.

from functools import lru_cache

from fastapi import Depends, FastAPI

from . import config

app = FastAPI()


@lru_cache
def get_settings():
    return config.Settings()


@app.get("/info")
async def info(settings: config.Settings = Depends(get_settings)):
    return {
        "app_name": settings.app_name,
        "admin_email": settings.admin_email,
        "items_per_user": settings.items_per_user,
    }

接着,对于后续请求中依赖项里对 get_settings() 的任何调用,它不会再次执行 get_settings() 的内部代码并创建新的 Settings 对象,而是会一遍又一遍地返回第一次调用时返回的那个相同对象。

lru_cache 技术细节

@lru_cache 会修改它所装饰的函数,使其返回第一次返回的相同值,而不是每次都重新计算并执行函数代码。

因此,下面的函数会针对每个参数组合执行一次。然后,当以完全相同的参数组合调用该函数时,将重复使用该参数组合先前返回的值。

例如,如果你有一个函数:

@lru_cache
def say_hi(name: str, salutation: str = "Ms."):
    return f"Hello {salutation} {name}"

你的程序可能会像这样执行:

sequenceDiagram

participant code as Code
participant function as say_hi()
participant execute as Execute function

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Camila")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Camila")
        function ->> code: 返回存储的结果
    end

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Rick")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 0, .1)
        code ->> function: say_hi(name="Rick", salutation="Mr.")
        function ->> execute: 执行函数代码
        execute ->> code: 返回结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Rick")
        function ->> code: 返回存储的结果
    end

    rect rgba(0, 255, 255, .1)
        code ->> function: say_hi(name="Camila")
        function ->> code: 返回存储的结果
    end

在我们的依赖项 get_settings() 的情况下,该函数甚至不接受任何参数,因此它始终返回相同的值。

这样,它的行为几乎就像是一个全局变量。但由于它使用了依赖项函数,我们可以在测试时很容易地覆盖它。

@lru_cachefunctools 的一部分,它属于 Python 标准库。你可以在 Python 文档中关于 @lru_cache 的章节阅读更多信息。

小结

你可以使用 Pydantic Settings 来处理应用的设置或配置,享受 Pydantic 模型的全部能力。

  • 通过使用依赖项,你可以简化测试。
  • 你可以与它一起使用 .env 文件。
  • 使用 @lru_cache 可以避免为每个请求反复读取 dotenv 文件,同时允许你在测试时进行覆盖。